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Abstract. A candidate for the insulating phase of the 2D electron gas, seen in high mobility 2D MOSFETS
and heterojunctions, is a Wigner crystal pinned by the incipient disorder. With this in view, we study the
effect of collective pinning on the physical properties of the crystal formed in zero external magnetic field.
We use an elastic theory to describe to long wavelength modes of the crystal. The disorder is treated using
the standard Gaussian variational method. We calculate various physical properties of the system with
particular emphasis on their density dependence. We revisit the problem of compressibility in this system
and present results for the compressibility obtained via effective capacitance measurements in experiments
using bilayers. We present results for the dynamical conductivity, surface acoustic wave anomalies and the
power radiated by the crystal through phonon emission at finite temperatures.

PACS. 71.10.-w Theories and models of many-electron systems – 73.20.Qt Electron solids

1 Introduction

The question of the combined effects of disorder and inter-
actions in correlated electron systems is one of the more
important issues in solid state physics. The interest in
this longstanding problem has been revived by the spec-
tacular experimental results on the two dimensional elec-
tron gas [1]. From a theoretical standpoint, both disorder
and interactions are challenges in themselves. By starting
from the noninteracting limit, considerable progress was
achieved in the understanding of the effects engendered
by disorder in the system. The rationale behind such a
limit stems from the expectation that not too strong in-
teractions will lead to a Fermi liquid behavior, at least
in high dimensions, and therefore, excitations of the sys-
tem will behave as free fermions. For non interacting elec-
trons in one and two dimensions, disorder is known to
lead to the phenomenon of Anderson localization where,
all states are localized [2–4]. Going from this non inter-
acting limit to the interacting system has proven quite
challenging. In three or higher dimensions, where Fermi
liquid theory is expected to hold in the absence of dis-
order, a renormalization group study [5,6] indicated that
disorder strongly enhanced the interactions hence pushing
the system away from the noninteracting point. In low di-
mensions, the situation is even more complicated because
in this case, even in the absence of disorder, the interac-
tions themselves have singular effects on the system, and
can lead to non fermi liquid phases. For example, in one

a e-mail: chitra@lptl.jussieu.fr
b e-mail: Thierry.Giamarchi@physics.unige.ch

dimension, where the interacting system is known to be a
Luttinger liquid [7,8], the combined effect of disorder and
interactions have been shown to lead to behaviors quite
different from that anticipated for a noninteracting sys-
tem [9].

Two dimensions is thus from this point of view dou-
bly marginal: first, the effect of interactions even in the
pure system is far from being completely settled and sec-
ondly, the disorder, although it leads to localization for
the noninteracting system does it only marginally. It is
therefore, natural to expect that interactions can alter
this picture of marginally localized states. Consequently,
the nature of the phase diagram of the two dimensional
electron gas as a function of the disorder strength and in-
teractions has been a subject of intense debate. There is
however, one limit where the combined effect of interac-
tion and disorder is amenable to an analytical study. This
is the limit of strong interactions, where, the electrons in
the pure system localize around the sites of a triangular
lattice to form a Wigner crystal [10,11]. In this crystal,
and far enough from melting, the particles become dis-
cernible by their position. Thus quantum effects are sim-
ple and manifest themselves in the quantification of the
vibrations of the electronic crystal. When a disorder po-
tential is added, its effect is to pin the elastic crystal [12].
The pinning of elastic structures, both classical [13–15]
and quantum [16,17], by disorder has been the subject of
intense studies and various methods have been developed
to tackle these problems. These tools have been used to
study the magnetic field induced Wigner crystal formation
in the 2D electron gas [18–22]. The optical conductivity
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and Hall coefficients [19,21] were computed and found to
be in excellent qualitative agreement with the experimen-
tal observations [23,24]. Combined with the theoretical
analysis, the optical conductivity provided clear evidence
that for certain filling fractions, the phase realized in this
system was indeed a Wigner crystal, weakly pinned on
impurities.

The formalism used to study the strong field crystal
can be easily modified to obtain the properties of the
B = 0 crystal. This is of importance [25] to experiments
on ultra clean Ga-As heterojunctions and Si MOSFETS
which exhibit the zero field metal-insulator transition. A
better way to parametrize the system is through the di-
mensionless parameter rs = a/aB, where the lattice spac-
ing a is related to the electron density n = 1/πa2 and aB

is the Bohr radius of the electron in the 2D electron gas.
One of the important questions is whether the insulating
phase seen in these systems at low densities or large rs is
indeed a disordered Wigner crystal. In the present paper
we focus on analyzing the physical properties of a puta-
tive Wigner crystal phase. Our approach complements the
standard approach starting from the noninteracting limit.
We investigate the effects of the disorder on such a system
and compute various observable quantities.

The plan of the paper is as follows. In Section 2 we
first use a variational wave function to estimate the effec-
tive particle size i.e., size of the localized wave packet at
a site. This parameter is expected to play an important
role as will be detailed later in the paper. We then present
the model and the variational solution. The remainder of
the paper is devoted to the computation of various ob-
servable quantities: Section 3 deals with the compressibil-
ity, Section 4 with the transport properties, in particular,
the conductivity, surface acoustic wave absorption and the
power radiated by the pinned crystal, followed by a con-
cluding Section 5. Technical details have been relegated
to the Appendices.

2 Model and method

We will follow the same procedure outlined in refer-
ences [19,21]. In the crystal state, the wavefunction of
the particles is localized around positions Ri. The wave
function has a characteristic width ξ centered around this
site. Since the localized wavefunction renders the particles
discernible by their position, the crystal can be consid-
ered as a collection of discernible particles of size ξ that
are labelled by their position Ri. Then only the (quan-
tized) vibrational modes corresponding to the displace-
ments of these particles needs to be retained in any low
energy description of the system. Of course, this greatly
simplifies the analysis and is the key ingredient which per-
mits a resolution of this problem. As pointed out previ-
ously [19,21], there are three important lengthscales to
describe the crystal: the lattice spacing a, the size ξ of
the particles, and the correlation length of the disorder rf
which we will come back to later. For the case of a strong
magnetic field the size of the particle is essentially the
cyclotron radius [19,21]. However, for the B = 0 Wigner

crystal, determining the size of the particle ξ is a question
in itself since it is determined by the competition between
kinetic energy and interactions.

2.1 Wavefunction in the crystal state

In this section, we use a variational wave function to de-
termine this effective width ξ as a function of the electron
density. We choose the ground state to be a Slater determi-
nant of Gaussian wave packets, whose width ξ is chosen to
be the variational parameter. The single particle Gaussian
wave packets centered around a site i with coordinate Ri,
take the form ψi(r) =

√
2
ξ exp− (r−Ri)

2

ξ2 . In the absence
of a magnetic field, the total variational energy per site is
given by

E(ξ) =
�

2

mξ2
+

e2

2εξ

∑
i

V (Ri) (1)

where the first term is the kinetic energy of the electrons,
and the second term is the potential energy arising from
coulomb repulsion and

V (Ri) = exp−R2
i

4ξ2
I0

(
R2

i

4ξ2

)
− exp−R2

i

8ξ2
(2)

I0 is a modified Bessel function of the first kind and Ri de-
notes the lattice sites. m, e and ε denote the mass, charge
and dielectric constant respectively. Minimizing the en-
ergy E with respect to ξ results in a self-consistent equa-
tion for ξ. Except in the limit of low densities, where one
can obtain an analytic expression for ξ, this variational
equation is rather complicated to solve analytically for ar-
bitrary densities, thereby requiring the use of numerical
techniques. In this paper, we discuss only the low den-
sity limit or equivalently the deep crystalline phase. In
this limit, as the density is lowered, the effective distance
between neighboring sites increases as a =

√
1/πn and

the effective width of the wave packet increases in manner
such that a/ξ � 1. Therefore, it is sufficient to retain only
the term R2

i = a2 in the expression for V . Expanding the
exponential in ξ/a, we obtain following expression for the
energy for low densities:

E =
�

2

mξ2
+ C

e2ξ2

εa3
+ . . . (3)

The constant C depends on the coordination number of
the lattice and the number of terms retained in the sum.
Retaining only nearest neighbor sites on a triangular lat-
tice, we obtain C � 1.88. Minimization of E with respect
to ξ, yields the result,

ξ =
(aB

C

) 1
4
a

3
4 ≡ n−3/8 (4)

aB = ε�
2

me2 is the Bohr radius of the electron. Note that
despite the fact that ξ increases with decreasing density,
the ratio ξ/a ∼ n

1
8 decreases with decreasing density in
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accord with the assumptions made above, thereby justi-
fying the expansion (3). We emphasize that this result is
valid only deep in the crystalline phase. Close to melting,
exchange terms become important and we need to solve
the equation with the full V to obtain a reasonable vari-
ation of the effective particle size with density. Moreover,
when exchange terms become non-negligible, the very hy-
pothesis of having discernable particles collapses, and an
effective theory different from the one presented in the
ensuing section is required.

In the presence of a magnetic field, the same calcula-
tion can be done to obtain ξ as a function of the density
and the field. For the purely Gaussian wave packet, the
magnetic field contributes a term mω2

cξ
2/2 to the energy

per site. In the limit of ultra strong magnetic fields dom-
inating the coulomb repulsion, we recover the result that

ξ =
√

�

eB which is just the cyclotron length. For arbitrary
fields,

ξ =
[

�
2

m2ω2
c + Cme2/εa3

] 1
4

. (5)

However, the very assumption of a Gaussian wave packet
implies that the electrons are confined to the lowest
Landau level and hence the above result holds, strictly
speaking, only for strong magnetic fields, and should be
viewed as a convenient interpolation formula.

2.2 Elastic Hamiltonian

Now that we have the important parameters characteriz-
ing the crystal, we present the elastic Hamiltonian describ-
ing the crystal phase. We use the same recipe as outlined
in references [19,21], and recall only the main steps here.
In the crystalline phase, the electrons occupy the sites of a
triangular lattice with a lattice constant a which is related
to the density of electrons by n ∼ (πa2)−1. A particle at
a site i is displaced from its mean equilibrium position
denoted by Ri, by u(Ri, t). In the continuum limit, the
vibration modes of the crystal lead to the following elastic
action in Fourier space

S=
1
2β

∑
ωn

∫
d2q
[
uT (q, ωn)(ρmω

2
n +ΩT (q))uT (−q,−ωn)

+uL(q, ωn)(ρmω
2
n +ΩL(q))uL(−q,−ωn)

]

+
∫
d2rdτV (r)ρ(r) (6)

where the transverse (longitudinal) displacements uT (uL)
are related to the Cartesian displacement u as follows:

uα(q) = uL(q)q̂α + uT (q)εαβ q̂β (7)

q̂ = q/|q| is the unit vector along q and εαβ is the fully
antisymmetric tensor with εxy = 1. These two modes
can be interpreted as the shear (uT ) and the compression
(uL) modes respectively. The Matsubara frequencies are
ωn = 2πn

�β with β = 1/T being the inverse temperature.

The terms quadratic in the frequency represent the kinetic
energy of these modes. ρm = m

πa2 , ρc = e
πa2 are the mass

and charge densities respectively. The elastic energies of
these modes are given [26] by

ΩL(q) = dL|q| + cLq2

ΩT (q) = cTq2 (8)

where cL, cT , d are elastic constants and, ε0 is the dielec-
tric constant of the substrate. For the classical crystal
on the triangular lattice, one has [26] cL = −0.18 ρ2

ca
ε0

,

cT = 0.04 ρ2
ca
ε0

and d = ρ2
c

ε0
. These values for the elastic

modulii in (8), are valid only for low densities, deep in
the crystal phase. For arbitrary densities, the elastic con-
stants depend on the scale ξ and change drastically as one
approaches melting. This point should be taken into ac-
count while comparing theoretical results for the density
dependence of various quantities, with experiments. Un-
fortunately a rigorous estimate of the elastic constants as
a function of the density is still lacking. The linear q de-
pendence in the compression mode ΩL(q) arises from the
coulomb repulsion. This is because a longitudinal defor-
mation changes the density profile of the crystal which
costs Coulomb energy. On the contrary, transverse modes
can be excited without changing the density and are thus
purely elastic.

Finally, the last term in the action describes the cou-
pling to disorder, modelled here by a random potential V .
The density of the particles ρ(r) is given by

ρ(r) =
∑

i

δ(r − Ri − ui) (9)

where δ is a δ-like function of range ξ. Since the dis-
order can vary at a lengthscale which can a priori be
shorter or comparable to the lattice spacing a, the con-
tinuum limit u(Ri) → u(r), valid in the elastic limit
|u(Ri) − u(Ri+1) � a, should be taken with care in the
disorder term [27,28]. This is done using the decomposi-
tion of the density in terms of its Fourier components

ρ(r) � ρ0 − ρ0∇ · u + ρ0

∑
K�=0

eiK·(r−u(r)) (10)

where ρ0 is the average density and K are the reciprocal
lattice vectors of the crystal.

The above formula shows that one should distinguish
between various parts of the disorder. Disorder that varies
at lengthscales much larger than the lattice spacing cou-
ples only to the ρ0∇ · u term. Although such a term can
modify the structure of the crystal quite strongly, it does
not lead to pinning and disappears from the transport
properties. Pinning, and thus the dominant contribution
to transport coefficients, is however achieved by the disor-
der that varies on lengthscales comparable to the lattice
spacing. In heterojunctions, such a disorder is expected to
be present due to interface roughness arising from epitax-
ial growth of the semiconducting layers sandwiching the
electron gas. The real system is further complicated by the
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presence of a long range disorder potential arising from
the presence of ineffectively screened dopants outside the
plane of the electron gas. However such a disorder varies
slowly compared to the scale of the lattice spacing, and we
will thus assume that we can neglect it as far as the trans-
port properties are concerned. Moreover, if the disorder
is weak and leads to collective pinning one can assume
a Gaussian distribution for V , since each volume of the
system will average over a large number of independent
impurities. In this case,

V (r)V (r′) = ∆rf
(r − r′) (11)

where ∆rf
is effectively a delta function with a range rf ,

which is the correlation length of the disorder. As dis-
cussed in reference [21], taking into account such a finite
correlation length for the disorder can also be done by
taking a delta-function correlated disorder but replacing
the size of the particles ξ by ξ0 ∼ max(rf , ξ) in δ in (9).

2.3 Gaussian variational method

We treat (6) using a variational method [19,29]. We
present here only the main steps of the treatment and
refer the reader to reference [21] for details. Many of the
technical details and subtleties of the method can be found
in the literature (see e.g. Refs. [16,30] for a review). We
first average (6) over disorder by introducing replicas. This
averaging results in an effective action which involves in-
teractions between the n replicas, given by

S =
1
2

∑
ωn

∫

q

∑
a

ua
T (q, ωn)

[
ρmω

2
n +ΩT (q)

]
ua

T (−q,−ωn)

+ ua
L(q, ωn)

[
ρmω

2
n +ΩL(q)

]
ua

L(−q,−ωn)

− ρ2
0

2

∫
d2r

∫ β

0

∫ β

0

dτdτ ′

×
∑

a,b,K

∆K cos
[
K · (ua(r, τ) − ub(r, τ ′)

)]
. (12)

The replica indices, a, b run from 1 to n. The physical
disorder averages are recovered in the limit n → 0. As
discussed above, the size of the particles ξ and the finite
correlation length of the disorder rf broaden the delta
function in the density (9) over a size ξ0. Consequently the
sum overK in (10) can be restricted to values ofK smaller
than Kmax ∼ π/ξ0. This in conjunction with the local
nature of the disorder permits us to replace ∆K in (12) as
a constant ∆K = ∆ for K < Kmax and zero otherwise.

We now search for a variational solution to (12) by
using the best quadratic action approximating (12). We
use the trial action

S0 =
1
2β

∫

q

∑
n,µ,ν

ua
µ(q, ωn)(G−1)ab

µν(q, ωn)ub
ν(−q,−ωn)

(13)
where the whole Green’s function (G−1)ab

µν(q, ωn) are vari-
ational parameters. The variational free energy is now
given by

Fvar = F0 + 〈S − S0〉S0 . (14)

The variational parameters are then determined by the
saddle point equations

∂Fvar

∂(G−1)ab
µν(q, ωn)

= 0. (15)

The pertinent solution of these saddle point equations (15)
solved in the limit of the number of replicas n→ 0, breaks
replica symmetry [19,21,29].

The connected Green’s functions defined as (G−1
c )µν =∑

b(G
−1)ab

µν for the two modes are given by

GcT (q, iωn) =
1

ρmω2
n +ΩT (q) + I(iωn) +Σ(1 − δn,0)

GcL(q, iωn) =
1

ρmω2
n +ΩL(q) + I(iωn) +Σ(1 − δn,0)

(16)

where the disorder induced pseudogap is found to be

Σ = cTR
−2
c = cT (2π2)−

1
6R−2

a (a/ξ0)6 (17)

with ξ0 = max[rf , ξ], cT � ρ2
ca
ε0

and Ra � cT /πn
2
√
∆. In

the present context, Rc and Ra are defined by the two
equations above. These two lengthscales are of physical
significance within the broader context of pinned elas-
tic structures. The length Rc is the Larkin-Ovchinikov
length [31], which corresponds to the distance for which
displacements are of the order of the size of the particle
(or correlation length of the disorder) u(Rc) ∼ ξ0. This is
the length above which metastability and pinning appear.
The length Ra is the positional length, and corresponds to
the distance for which the displacements are of the order
of the lattice spacing u(Ra) ∼ a. See reference [15,19] for
further details.

As explained in references [21,29], the function I(iωn)
is determined by the following self-consistent equation de-
rived in the semi-classical limit:

I(iωn) = 2πcTΣ
∫

q

[
1

ΩT (q) +Σ
+

1
ΩL(q) +Σ

− 1
ΩT (q) + ρmω2

n + I(iωn) +Σ

− 1
ΩL(q) + ρmω2

n + I(iωn) +Σ

]
. (18)

In the limit of small ωn, the above equation can be solved
analytically to obtain

I(iωn) =

√
2ρmΣ

[
1 +

4cTΣ
d2

log
(

d2

cTΣ

)]
|ωn|. (19)

This equation for I can be continued to real frequencies
and then solved numerically. The solution of the vari-
ational equations as obtained above thus allows us to
extract numerous physical quantities of the disordered
system. We will first discuss the compressibility in the
forthcoming section and the transport will be discussed in
Section 4.
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3 Compressibility

In this section we discuss the compressibility of the pinned
Wigner crystal. Although the compressibility is usually
simply related to density-density correlations, here one
should take special care in defining this quantity due to
two complications inherent to the Wigner crystal: (i) for
charged systems it is crucial to know whether one keeps
the system neutral or not when letting the density fluc-
tuate; (ii) since in presence of disorder one expects glassy
properties, the question of the timescale over which the
measurements are performed is relevant.

The naive way to define the compressibility κ would be
to add to the Hamiltonian the standard chemical potential
term

H = −µ
∫
d2r(ρ(r) − ρ0) (20)

and to compute the average change in density 〈ρ(r)−ρ0〉.
In linear response, the compressibility is given by the den-
sity density correlator. Using (7) and (10) the compress-
ibility is directly related to the correlation of the longi-
tudinal displacements. For the pure system this is easily
computed to be

κ ∝ lim
q→0,ωn=0

q2

ω2
n +ΩL(q)

. (21)

Since ΩL(q) ∝ q, the compressibility is zero. This arises
from the fact that the change of density induced by µ
occurs for a constant neutralizing background. The com-
bined system of the crystal plus the background thus be-
comes charged which costs too much energy and inhibits
this kind of density fluctuation.

To have a non-zero compressibility, even for the pure
system, it is thus important to change the density of the
Wigner crystal, while at the same time changing the back-
ground to maintain neutrality. An experimental way of
doing this is to perform a capacitance measurement [32].
We show here how to compute such a capacitance for the
case of two Wigner crystals planes [33] separated by a dis-
tance d, as shown in Figure 1. Though the experimental
setup (two layers and a gate) considered in reference [32]
is slightly different from the one considered here, we ex-
pect the results obtained here to hold for this experimental
geometry as well, since the crucial ingredient, namely en-
suring the neutrality of the system is preserved. Similar
results would be obtained if one of the plates was replaced
by a normal metal (such as a top gate for example).

The Hamiltonian of the system depicted in Figure 1 is
thus

H = H0
1 +H0

2

+
1
2

∑
(α,β)=1,2

∫

r,r′
Vαβ(r − r′)[ρα(r) − ρ0][ρβ(r′) − ρ0]

+
µ

2

∫

r

[ρ1(r) − ρ2(r)] (22)

where H0
1,2 are the elastic Hamiltonians of each 2DEG

excluding the Coulomb interaction. Vαβ is the usual

-m/2

m/2

d

r1

r2

Fig. 1. Capacitance measurement, which gives access to the
compressibility of the system. A voltage difference µ is applied
to a capacitor. Here for simplicity, the capacitor is made of two
planes of the 2DEG.

Coulomb interaction in and between the planes. If one
assumes that the system is neutral in the absence of µ,
then within linear response, the charge on one plane when
a potential µ is applied is

〈ρ1〉 =
µ

2
[〈ρ1ρ1〉 − 〈ρ1ρ2〉]. (23)

Thus (23) gives directly the capacitance C = 〈ρ1〉/µ. More
generally, we define the capacitance for finite q and ω (e.g.
corresponding to a time and space dependent potential µ)

C(ω,q) =
1
2
[〈ρ1ρ1〉ω,q − 〈ρ1ρ2〉ω,q] (24)

where the subscripts ω,q indicate that the correlation
functions are evaluated for finite momentum and fre-
quency. For a metal, a RPA evaluation of (24) gives
back [33] the standard formula for the compressibility of a
charged system. We recall the calculation in Appendix A
for convenience. One can use this general formula to com-
pute the capacitance for the Wigner crystal. Since one is
interested in the limit of small q and ω one can use the
decomposition of the density (10). The Hamiltonian (6)
becomes

H = Hsr
1 +Hsr

2

+
ρ2
0

2

∑
(α,β)=1,2

∫

r,r′
Vαβ(r − r′)[∇ · uα(r)][∇ · uβ(r′)] (25)

where Hsr
1,2 is the part of the Hamiltonian that does not

contain the long range (i.e. for q ∼ 0) of the Coulomb
interaction. u1 and u2 denote the displacement vectors in
the two planes. Since V11(q) = V22(q) ∝ 1/|q|, the third
term in (25) obviously yields the part proportional to q in
the bulk modulus for an isolated plane (see (8)). Note that
in writing (25) we have neglected the short range part of
the interplane interaction

HSR
1,2 =∫

r,r′
Vαβ(r − r′)ρ2

0

∑
K,K′ �=0

eiK·(r−u1(r))e−iK′·(r′−u2(r
′)).

(26)

The translational invariance restricts the sum to K = K′
terms. This essentially contains the Fourier transform of
the interplane potential which using (31) is found to be-
have as ∫

r

V12(r)eiK·r =
(2π)e−Kd

K
. (27)
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[
ρmω2

n + Ωsr
L (q) + ρ2

0q
2V11(q)

]
G11 + F [G11] ρ2

0q
2V12(q)G12

ρ2
0q

2V12(q)G21

[
ρmω2

n + Ωsr
L ((q) + ρ2

0q
2V11(q)

]
G22 + F [G22]


 (35)

Thus if the planes are at a distance d much larger than
the lattice spacing a of the WC, this term is obviously
much smaller than the long range part of the intraplane
interaction, and can be neglected. It can also be neglected
if one of the planes is an homogeneous electron gas (i.e. a
simple metal). In the case where the two planes are close
enough this term should be retained and can lead to in-
teresting effects such as the locking of the two Wigner
crystals together [34]. The in-plane coupling of the higher
harmonics of the density contribute to HSR and gener-
ate the regular non-singular part of the Hamiltonian (i.e.
the part proportional to q2 in the elastic coefficients). In
fact this approach is synonymous with the method used
in reference [26] to calculate the elastic coefficients. The
derivation is done in Appendix B.

Let us now use the general formula (24) to compute
the capacitance of the pure system. From (10), the long
wavelength part of the density is given by

ρα(q) = −iρ0quαL(q). (28)

One thus needs only the longitudinal part of the action to
calculate the compressibility.

S =
(
u1

L(q) u2
L(q)

)

×
(
ω2

n +Ωsr
L (q) + ρ2

0q
2V11(q) ρ2

0q
2V12(q)

ρ2
0q

2V12(q) ω2
n +Ωsr

L (q) + ρ2
0q

2V11(q)

)

×
(
u1

L(−q)

u2
L(−q)

)
(29)

where Ωsr
L (q) is the “short range” part of the elastic coeffi-

cients (8). Using (28) and (24) one obtains the capacitance

C(iωn,q) =
1
2

ρ2
0q

2

ρmω2
n +Ωsr

L (q) + ρ2
0q

2[V11(q) − V12(q)]
.

(30)
The thermodynamic compressibility is given by the value
of C for ωn = 0. Note that in this case one obtains the
same value by considering the retarded correlation func-
tion (doing the analytic continuation iωn → ω + iδ) and
taking the limit ω → 0 first (for a fixed q). The divergence
arising from the long range part of the Coulomb potential
now cancels since

V11(q) − V12(q) =
∫
d2reiq·r

[
1
r
− 1√

r2 + d2

]

=
(2π)(1 − e−qd)

q
(31)

is non divergent when q → 0. This of course traduces
the fact that the global system remains neutral when the
potential is applied. Using (31) one obtains

C(ωn = 0, q → 0) → ρ2
0q

2

2Ωsr
L (q) + 4πd(ρ2

0q
2)
. (32)

One thus recovers that the inverse capacitance is the
sum of a purely geometric term and an electronic one
(see (A.4)). The electronic capacitance is simply given by

Cel = lim
q→0

ρ2
0q

2

2Ωsr
L (q)

=
ρ2
0

2cL
∝ − ε0

e2a
. (33)

This term, which for a normal metal is simply related to
the static compressibility, is thus negative for a Wigner
crystal, if one uses the classical estimates [26] for the elas-
tic coefficients. The fact that a system of discrete charges
can lead to such effects has been noted before for classical
Wigner crystals (see e.g. Ref. [35] and references therein).

Let us now turn to the disordered case. In the pres-
ence of disorder, the same calculation can be repeated to
obtain the compressibility. To do this, we assume that
the disorder potentials in each layer is drawn from in-
dependent distributions and repeat the variational calcu-
lation of the previous section. The trial action (13) has
now two additional indices that denote the two layers. For
simplicity, we will only denote these indices here, all the
others being implicit. The trial action is thus (in these in-
dices) a two by two matrix with the Green’s functions G−1

µν

where µ, ν = 1, 2. Obviously G11 = G22 and G12 = G21.
From (24) and the inversion of the two by two matrix the
capacitance is thus given by

C(ω,q) =
ρ2
0q

2

2
[G11 −G12] =

ρ2
0q

2

2

[
1

G−1
11 −G−1

12

]
(34)

where all other indices (replica, longitudinal, q, ω) are im-
plicit. The variational procedure can now be repeated to
determine G11 and G12. Because the disorder is indepen-
dent from plane to plane, the trial free energy has the
following matrix structure

see equation (35) above

where F is the same as the term induced by disorder aver-
aging in a single plane. The minimization (15) now gives
the self consistent equations

G−1
11 = [ρmω

2
n +Ωsr

L (q) + ρ2
0q

2V11(q)] + F ′[G11]

G−1
12 = ρ2

0q
2V12(q). (36)

Note that the in-plane inverse Green’s function is identical
to the one in the absence of interplane interactions, and
thus is given by the variational solution of the previous
section. The interplane inverse Green’s function is trivial
and simply given by the long range part of the interaction
between the planes.
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C(ωn,q) =
1

2

ρ2
0q

2

ρmω2
n + Ωsr

L (q) + ρ2
0q

2[V11(q) − V12(q)] + I(iωn) + Σ(1 − δn,0)
(37)

In the presence of disorder, the compressibility is given
by the connected Green’s function [16]. Using (34), (36)
and (16) one obtains

see equation (37) above.

As for the pure system, we see that the geometric capac-
itance contributes to the total capacitance. Isolating the
electronic part of the capacitance we find

Cel(ωn,q) =
ρ2
0q

2/2
Ωsr

L (q) + I(iωn) +Σ(1 − δn,0)
(38)

(38) thus shows that in the presence of disorder one has to
distinguish between the thermodynamic capacitance and
the dynamical one. If one considers the thermodynamic
capacitance, then (38) should be computed for ωn = 0.
In that case all contributions from the disorder disappear
in (38) and the capacitance is identical, within the varia-
tional approximation, to that of the pure system. On the
other hand, if one considers a capacitance measurement
in response to a modulation at finite frequency, which is
certainly the case experimentally, one has to take the an-
alytic continuation iωn → ω + iδ first. In this case one
obtains

Cel(ω,q) =
ρ2
0q

2/2
Ωsr

L (q) + I(ω) +Σ
. (39)

As for the pure case, one should take the limit ω → 0
first. In this limit, the function I(ω) is regular and tends
to zero. Taking q → 0, we see that since the mass term Σ
prevails in the denominator the compressibility is zero.
This is a consequence of the fact that the pinning by dis-
order renders the system inflexible to charge modulations.
Note that contrary to the pure case, the thermodynamic
response and the slow dynamic one are not equivalent in
the disordered case. This is not surprising considering the
glassy nature of the system.

As for the effect of a magnetic field on the compress-
ibility, naively one would expect that it has no effect since
the compressibility is a static property. This is what is
found within the variational approximation. However it is
important to note that, although there is no explicit mag-
netic field dependence of the compressibility, there is still
a variation of the thermodynamic compressibility with the
magnetic field accruing from the field dependence of the
elastic constants of the crystal.

4 Transport

We now focus on the consequences of disorder for the
zero temperature transport properties. This is of partic-
ular importance to the materials which exhibit the zero
field metal-insulator transition where transport is indeed
the main probe of the physics. Up to now, the exper-
imental emphasis has been on finite temperature resis-
tivity and magneto-resistance measurements. However for

the Wigner crystal such quantities are difficult to com-
pute theoretically since they are dominated by the de-
fects in the system [21]. It is thus difficult to use them
as a probe of the Wigner crystal nature of the under-
lying phase. As explained in references [17,21] the opti-
cal conductivity does not suffer from such a problem and
can be reliably computed theoretically from the elastic
Hamiltonian of the crystal. Here, we present results for
the dynamical conductivity, surface acoustic wave mea-
surements and the power radiated by the crystal. These
measurements done in the quantum Hall samples at high
fields were instrumental in clarifying the physics of these
systems [23,24,36–38]. Clearly similar measurements are
called for in the zero field samples, and would be crucial
to understand the physics of the insulating phase.

4.1 Conductivity

The conductivity of the disordered crystal can be ob-
tained from the displacement-displacement correlation
function [21] and is given by:

σαβ(ω) = iρ2
cωGαβ(q = 0, ω + iε) (40)

where µν = x, y and Gµν(q, ω) = 〈uµ(q, ω)uν(q, ω)〉
are the displacement Green’s function. Since, there is
no magnetic field, the longitudinal resistivities σxx(ω) =
σyy(ω) = σ(ω). These functions are related to the con-
nected Green’s functions of (16) and using an analytic
continuation iωn → ω + iε, we obtain

σ(ω) = iρ2
c

ω

−ρmω2 +Σ + I(ω)
. (41)

As seen in other disordered elastic systems [21,29], the
conductivity is completely determined by Σ and I(ω). For
the pure crystal,Σ = I(ωn) = 0, and one recovers that the
real part of the conductivity exhibits a ω = 0 Drude peak
and zero finite frequency conductivity, while the imaginary
part varies as 1/ω. In the presence of disorder, the crystal
is pinned collectively forbidding any sliding motion of the
crystal. Consequently, the Drude peak is annihilated and
the dc conductivity Reσ(ω = 0) = 0. This results in a
non-zero finite frequency conductivity and the appearance
of a peak at a new scale ωp �

√
Σ
ρm

called the pinning
frequency [39]. The pinning frequency is thus determined
by (17). The pinning peak is broadened by the dissipative
term I(ω) which also generates, as can be seen from (41),
a slight shift of the pinning peak from ωp due to the real
part of I(ω). Using (19), we find that for ω � ωp.

Reσ(ω) ∼ ρ2
c

√
2ρmΣ

[
1 +

4cTΣ
d2

log
(

d2

cTΣ

)]
ω2

Σ2

Imσ(ω) = ρ2
c

ω

Σ (42)
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Fig. 2. The real part of the conductivity σ(ω) (in units of
e2/
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A2m) as a function of the frequency measured in units

of
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for the regime where the disorder correlation length

rf < ξ for various electronic densities n(in units of (πa2
B)−1).

These curves have been obtained using the classical values of
the elastic moduli and the parameter A2 is given in (50).
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Fig. 3. The real part of the conductivity σ(ω) (in units of
e2/

√
A1m) as a function of the frequency measured in units

of
√

A1
m

for the regime where the disorder correlation length

rf > ξ for various densities n (in units of (πa2
B)−1). As before,

these curves have been obtained using the classical values of
the elastic moduli and the parameter A1 is given in (47).

while for high frequencies ω � ωp

Reσ(ω) ∼ ρ2
c

ρ2
mω

3
. (43)

The behavior of the conductivity for all intermediate val-
ues of ω can be obtained by solving numerically (18) and
using the solution for I(ω) in (41). Referring to (17), we
note that the result for Σ depends on whether the disor-
der correlation length is larger or smaller than the size of
the particles of the crystal (rf ≶ ξ). This has serious im-
plications for the density dependence of the conductivity
as can be inferred from Figures 2 and 3 where, we plot the

conductivity for different values of the density in the two
regimes rf < ξ and rf > ξ.

The density dependence of the pinning frequency and
the height of the pinning peak can now be evaluated in a
straightforward manner. The peak height is given by the
expression

P = σ(ωp) = ρ2
c

√
Σ

ρm
Im

1
I(ωp)

. (44)

If we neglect corrections to the pinning frequency arising
from I, then I(ωp) = ΣZ where Z is some complex num-
ber, and in this case, the leading density dependence of
the peak height is given by

P ∝ ρ2
c√

ρmΣ
. (45)

The behavior of the peak height is thus entirely deter-
mined by Σ. To obtain the actual density dependence,
one needs to know the elastic moduli of the crystal. Using
the results of reference [26], we find that in the regime,
rf > ξ, the electrons see the bare disorder and

Σ = A1n
− 1

2

Rc =

√
be2

A1ε
√
π
n (46)

where
A1 = (2π2)−

1
6∆ε/b

√
πe2r6f (47)

and b = 0.04 for the classical triangular lattice. This
leads to

ωp ∝ n− 3
4

P ∝ n
7
4 . (48)

Consequently, the peak position shifts to higher frequen-
cies and the peak height decreases with decreasing density
as is seen in Figure 3.

In the opposite regime where the disorder correlation
length rf < ξ, the effective particle size being larger, the
particle sees an averaged effective disorder. Using the clas-
sical values for the elastic moduli, we find that

Σ = A2n
7
4

Rc =

√
be2

A2ε
√
π
n− 1

8 (49)

where
A2 = (2π2)−

1
6∆επ

7
4 (C/aB)

3
2 /be2 (50)

and C = 1.88 for the triangular lattice cf. (3). Hence

ωp ∝ n
3
8

P ∝ n
5
8 . (51)

This implies that as density is decreased, the pinning peak
shifts to lower frequencies accompanied by a concomitant
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decrease of peak height as shown in Figure 2. The density
dependence of the pinning peak is a test that can prove
whether the insulating phase is indeed a Wigner crystal.

The above results were obtained using the variational
approximation (12) which takes into consideration only
small oscillations around the pinned position. This method
describes the correct physics only if topological defects
(solitonic excitations of the system) are unimportant. This
is indeed the case in three dimensions, where the Bragg
glass phase of a weakly disordered system is stable to
the creation of topological defects [28] and the variational
results for the conductivity are valid for all frequencies.
However, in d = 2, topological defects are generated by
the disorder albeit at a length scale ξD that can be arbi-
trarily large [28,40,41] compared to the positional length
scale Ra (and thus even larger compared to the pinning
length Rc). Thus, as explained in detail in reference [21],
even in d = 2 the existence of topological defects does
not affect our results in the range of frequencies around
the pinning peak. On the contrary, the d.c. and very low
frequency behavior of the conductivity will be affected by
the presence of defects. For instance at T = 0, the σ ∼ ω2

behavior predicted by the variational approach will be re-
placed by σ ∼ |ω| in the presence of defects [42], due to
soliton-type excitations. At finite temperatures, in the ab-
sence of defects the crystal would be collectively pinned
leading to a non linear response and the absence of lin-
ear resistivity, whereas a linear resistivity of the variable
range hopping (VRH) or Efros-Schklovskii (ES) form is
expected [43] when defects are taken into account. Indeed
the connection between VRH-ES conductivity and soli-
ton type excitation has been recently made in the frame-
work of disordered elastic systems [44]. We emphasize that
though defects have to included in the estimation of the
low frequency conductivity, this is not necessary for calcu-
lations of the optical conductivity for frequencies around
the pinning peak. Since the variational method permits
a quantitative computation of the optical conductivity,
conductivity measurements can be used as the principal
experimental tool to determine the Wigner crystalline na-
ture of insulating states in two dimensional electron gases.

Another interesting quantity is the threshold electric
field for depinning of the crystal. This field is related [31]
to the parameters of the problem by the relation ET =
cTR

−2
c ξ0 where ξ0 = max[rf , ξ]. Using (46, 49), we obtain

ET ∝ n− 1
2 , rf > ξ

ET ∝ n
11
8 , rf < ξ. (52)

Note that for rf > ξ, the threshold field increases with
inverse density, implying that the crystal gets more and
more pinned in the low density regime. However, since ξ
increases when the density decreases according to (4) on
has to crossover to the other regime rf < ξ. Depending on
the correlation length of the disorder, the system can thus
cross over from one kind of dynamical behavior to another
as the density is varied. In the first case, the pinning fre-
quency and the threshold field increase with decreasing
density. When the particle size exceeds the length scale

of disorder, the pinning frequency and the threshold de-
crease with decreasing density. In both cases, the peak
height decreases with decreasing density. This is compat-
ible with the reduction of spectral weight with decreasing
density. Such a crossover would lead to a maximum in the
threshold field as the density is decreased.

If we now turn on a magnetic field perpendicular to the
plane of the crystal, the result for Σ is unchanged as long
as the magnetic length lc > ξ. For weak fields, the peaks
in the diagonal conductivity now occur at the frequencies
ωB

p = ωc ± ωB=0
p ± ω2

c

8ωB=0
p

. For strong enough fields such
that lc ≤ ξ, we revert back to the usual strong field physics
discussed in reference [21].

4.2 Surface acoustic wave measurements

Another physical property that can be extracted from
our results pertains to surface acoustic waves (SAW).
SAW measurements were used in the past to obtain the
crystal dispersion relations [37]. In SAW measurements,
the system is excited by a finite q SAW with a frequency
ω = vq/2π, where v is the velocity of the SAW. As the
excitation traverses the system, the SAW propagation is
completely affected by the piezoelectric interaction result-
ing in an attenuation and a shift in the SAW velocity. This
shift δv and the attenuation rate κ are essentially deter-
mined by the density response function of the system and
are given by [45]

∆v

v
=
α2

2
1

1 +
[

σ(q)
σm

]2

κ =
qα2

2
σ(q)σm

σ2
m + σ(q)2

(53)

where α is the piezoelectric coupling constant which deter-
mines the interaction between the SAW and the electron
system and σm = v(ε+ ε0) where ε and ε0 are the dielec-
tric constants of the medium and vacuum respectively.
and the momentum dependent longitudinal conductivity
of the crystal σ(q) ≡ Reσ(q, ω = vq). Notice that ∆v and
κ provide an indirect measurement of the conductivity at
finite q. Using the results of the preceding sections, we
obtain

σ(q, ω) =
iρ2

cωq
2
x

q2
GL(q, ω) +

iρ2
cωq

2
y

q2
GT (q, ω) (54)

where

GL(q, ω) =
1

Σ +ΩL(q) − ρmω2 + I(ω)

GT (q, ω) =
1

Σ +ΩT (q) − ρmω2 + I(ω)
. (55)
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Fig. 4. The typical profile of the SAW velocity shift (in arbi-
trary units calculated for σm = 1 and α2 = 2) as a function of
the frequency ω = vq and density. In both the regimes of dis-
order, the position of the minimum shifts to higher frequencies
and the depth decreases as density is decreased. The quanti-
tative behavior will be governed by the value of Σ. correlation
length rf > ξ. The curves are plotted for various values of the
density n.

Using I(ω) = I1(ω) + iI2(ω) one gets

Reσ(q, ω = vq) =

ρ2
cv

q

[
q2xI2(vq)

[Σ + q2(cL − ρmv2) + dq + I1(vq)]2 + I2(vq)2

+
q2yI2(vq)

[Σ + q2(cT − ρmv2) + I1(vq)]2 + I2(vq)2

]
(56)

where I1 and I2 are the real and imaginary parts of I(ω).
For small frequencies since I2(ω) ∝ ω, and Σ is the dom-
inant scale,

Reσ(q, ω = vq) = Γ
v2q2

Σ2
(57)

where Γ =
√

2ρmΣ[1 + 4cT Σ
d2 log( d2

cT Σ )] is a density de-
pendent parameter independent of q. Consequently, one
has

∆v

v
=
α2

2
1

1 +
[

Γv2q2

Σ2σm

]2

κ =
α2

2
Γv2q3Σ2σm

Σ4σ2
m + Γ 2v4q4

. (58)

Using our results for I(ω) and the wave vector dependent
conductivity, we can thus calculate the shift and attenua-
tion for all values of q. The results are shown in Figure 4.
In both the regimes rf ≶ ξ, despite a reduction in the
the magnitude of the SAW anomaly with decreasing den-
sity, the width of anomaly is expected to be strongly den-

sity dependent and is essentially dictated by the competi-
tion of the disorder scale rf and the effective particle size.
These results provide an impetus for detailed SAW ex-
periments in the 2d electron gas systems. We reiterate
that the above derivation has been done with the classi-
cal values of the elastic constants, and is thus valid deep
in the crystal phase. A full quantitative prediction would
require a precise knowledge of the variation of the elastic
constants with density, a piece of information missing at
the moment.

4.3 Power radiated by the 2d crystal

Another possible probe of the physics of the electron gas
concerns thermometry. This involves a study of transfer
of heat generated by a current in the electron gas to its
three dimensional environment. This occurs via phonon
emission at any given temperature and is related to the in-
ternal dynamics of the electron gas. These measurements
were done on the electron gas both in the absence and
presence of magnetic fields [46–48]. The expression for the
power radiated by the 2d gas at a temperature T into
cooler environment, considered to be at zero temperature
is given by [47]:

P =
∑
Q

ω(Q)|M(Q)|2nB(β�ω(Q))G(q, ω(Q)) (59)

where G(q, ω) ∝ ωRe(1/σ(q, ω)), q is the projection of the
phonon momentum Q onto the plane of the WC, M is the
electron phonon matrix element and nB is the usual Bose
distribution function. Following reference [46], we assume
that the electron phonon coupling is dominated by the
piezoelectric effect and |M(Q)|2 ∼ 1/Q. In the absence of
any external field and for high mobility systems, G ∝ ω2

for ω ≡ ω(Q) ∝ Q and and the predicted power radiated
P ∝ T 5 was found to be in accord with experiments. Based
on power counting arguments, it was also shown that the
radiated power in the IQHE phase P ∝ T 4. In the light
of these experiments, an obvious question is what is the
power radiated in the pinned crystal. A naive approach
would be to suppose that finite temperature contributions
to Re1/σ are small at low temperatures, hence permit-
ting one to approximate G(q, ω) by its zero temperature
value. In this case, we find that for the frequency range
0 < ω < ωp, Re1/σ(q, ω(q)) does not vary significantly.
Following the lines of references [46,47], since the typi-
cal values of wave vectors and frequencies of the phonons
are small compared to the scales over which the inverse
conductivity changes, we replace G ∝ ω. Again a simple
power counting results in P ∼ T 4 akin to what is seen in
the IQHE phases.

A real calculation of P requires a knowledge of the
finite temperature conductivity. At low enough temper-
atures, topological defects are thermally excited and
they constitute the primary contribution to the ultra-
low frequency conductivity. Though our formalism can-
not treat the defects, we present heuristic arguments
to justify our above result. A reasonable hypothesis for
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the low temperature frequency dependent conductivity,
is σ(q, ω, T ) ∼ σ(q, ω, 0) + σd(q, ω, T ), where σd is the de-
fect contribution. The presence of σd leads to a finite but
small dc conductivity σ(T ) in the long wavelength limit.
We expect this to be the dominant contribution for small
frequencies ω < ωd and for frequencies ω > ωd, we ex-
pect the finite frequency contribution to dominate. The
cut-off frequency ωd is fixed by σ(ω, T = 0) ∼ σd(T ).
Since for small frequencies, σ(ω, T = 0) ∼ Aω2, we
obtain ωd =

√
σd(T )/A. This leads to the form that

Re(1/σ(q, ω, T ) ∼ 1
σd(T ) + Re(1/σ(q, ω, T = 0). Using

this form in (59), and doing the usual power counting,
we obtain P ∝ T 4 + aT

√
σd(T ). Since in the limit of low

temperatures σd(T ) is expected to be exponentially small,
the power spectrum is dominated by the T 4 term, thereby
justifying our naive analysis of the preceding paragraph.
This coincidence is related to the fact that both the pinned
crystal and the IQHE phases are incompressible. Clearly,
the variations seen in the inverse conductivity will modify
this result, but we expect the result to hold for some range
of low enough temperatures with a crossover to a different
scaling form at higher temperatures.

5 Conclusions and experimental propositions

Before we conclude, we delve into the possibility of obtain-
ing quantitative estimates for the theoretical scales Ra

and Σ in the so called WC phase. These are very im-
portant for a real comparison of theoretical predictions
with experimental data. The available experimental data
which include mobility and resistivity measurements, per-
mits one to calculate basic quantities like the the fermi
momentum kF and scattering rates. The fermi momentum
can be expressed as a simple function of density πa2 = n
or rs = a/aB, the mass renormalization factor mr and the
relative permittivity εr of the material. The Bohr radius
of the electron in the given material is aB = εr/mr0.53 Å.
Using the relation for the Fermi energy of the electron gas,
EF = �

2

m∗a2 ≡ �
2k2

F /m
∗, one finds

kF = 1.768n
1
2 � mr

εrrs
1.88 × 1010 (60)

kF is expressed in units of inverse meters. We also find
that the plasma frequency of the electron gas

ω2
plas =

e2

2πm∗εa3
(61)

and the pinning frequency ωp =
√

cT

ρm
R−1

c which as shown

earlier, sets the scale for the conductivity and other dy-
namical quantities, satisfy the following relation

ωplas

ωp
∼ Rc√

2a
(62)

where, the Larkin length Rc � Ra[ξ0/a]3. Since most ex-
periments on the 2D electron gas in Si MOSFETS and

clean heterojunctions probe dc quantities, they cannot
permit a simple extraction of the disorder scales. To use
the available data on dc transport to extract the disor-
der scales, would require a detailed theoretical study of
finite temperature dc transport, which is clearly beyond
the scope of this paper and that of the variational method.
The only other possibility is through measurements of
microwave conductivity which presents a straightforward
way of extracting the pinning frequency. These measure-
ments in conjunction with SAW measurements which can
be used to obtain the effective elastic modulus can then be
combined with theoretical studies to verify the collectively
pinned nature of the crystal.

To conclude, in this paper, we have studied the the
physical properties of the Wigner crystal of a low density
electron gas that is pinned by weak Gaussian disorder. We
have used the standard combination of the Gaussian varia-
tional method and replicas to calculate a host of transport
properties. We presented results for the evolution of the
dynamical conductivity as a function of density in both
the regimes where the effective particle size ξ is bigger
or smaller than the disorder correlation length rf , the
SAW attenuation and the putative power radiated by the
pinned crystal to its environment. We hope that our re-
sults provide a stimulus for microwave conductivity mea-
surements which have been instrumental in establishing
the crystalline nature of the 2DEG in very strong mag-
netic fields [23]. This will then instigate a real debate as
to whether the insulating phase seen in systems which ex-
hibit the 2d MIT is really a Wigner crystal or some other
phase.

Clearly many questions still need to be addressed in or-
der to understand the real nature of the crystalline state.
As mentioned earlier, one first needs to evaluate the elastic
constants of the crystal as a function of the density. The
variational wave function used in the Section 2.1 to obtain
the effective particle size can be used to obtain reasonable
estimates of these constants. We expect the bulk modulus
to not differ much from the result of reference [26] since
this is fixed solely by the coulomb interaction. However,
the shear modulus is bound to deviate from the classical
value especially as it approaches melting when the den-
sity is varied. These values when plugged into the results
obtained in this paper can lead to a behavior, not too far
from the melting of the crystal, which deviates strongly
from that expected for a system with the classical elastic
constants. Secondly, in the absence of a strong magnetic
field, the spinful nature of the electrons might lead to in-
teresting spin physics in the crystalline phase. Interest-
ing spin liquid behaviors have been seen in studies of the
multi- exchange spin models in a triangular lattice [49,50]
and it would be pertinent to ask if such exotic spin physics
arises in the crystal and how does this change when the
system is pinned by the incipient disorder. Moreover, any
theoretical study of the magneto-resistance needs to take
the spin physics into account. Other questions concern
the behavior of the system close to depinning as also the
dc transport at finite temperature. Some of these ques-
tions will be addressed in future work.
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Appendix A: RPA

A standard way to compute the compressibility of a
charged system is through the free energy F of the system
assuming neutrality, and from that to compute dµ/dN .
Since the system is always supposed to remain neutral
the compressibility stays finite even for a charged system.
However, this method is cumbersome since the calculation
of the free energy is usually more difficult than that of a
correlation function. In this appendix we show, using the
RPA approximation, that the formula (23) indeed yields
the standard results for the compressibility of a normal
metal.

Using (22) it is easy to check that the susceptibilities
χαβ = 〈ραρβ〉 are given, in RPA, by

(
χ11

χ12

)
= −

(
χ0V11 χ

0V12

χ0V12 χ
0V11

)(
χ11

χ12

)
+
(
χ0

0

)
(A.1)

where χ0 is the bare (i.e. for H0 only) density-density
correlation function in one of the systems and the q and
ω dependence is implicit. It is easy to solve (A.1) to obtain
the (q dependent) capacitance

χ11(ω,q) − χ12(ω,q) =
χ0(ω,q)

1 + χ0(ω,q)(V11(q) − V12(q))
.

(A.2)
The Fourier transform of the Coulomb potentials are given
by (31). The true capacitance corresponds to ω = 0 and
the limit q → 0 which leads to

C =
1

(2χ0(q = 0))−1 + 4πd
. (A.3)

The total capacitance is thus the sum of a geometrical
one Cgeom and one due to the electron gas residing in the
planes Cel

1
C

=
1

Cgeom
+

1
Cel

. (A.4)

The geometrical one is the standard 1/(4πd) result. For
a simple electron gas, χ0(q = 0)−1 is simply the screen-
ing length λ. One thus recovers that the geometrical dis-
tance d between the planes is effectively enhanced by the
electronic screening length λ on each plane.

Appendix B: Calculation of the elastic
coefficients

The decomposition of the density (10) allows to recover
quite simply the formulas of reference [26] for the elas-
tic coefficients. Indeed if one assumes that the interaction
between the particles of the crystal is

H =
1
2

∫

r,r′
V (r − r′)[ρ(r) − ρ0][ρ(r′) − ρ0] (B.1)

where V (r− r′) is the (three dimensional) Coulomb inter-
action. The decomposition of the density (10) allows us to
rewrite (B.1) as

H =
ρ2
0

2

∫

r,r′
V (r − r′)[∇ · u(r)][∇ · u(r′)]

+
ρ2
0

2

∑
K�=0

∫

r,r′
V (r − r′)eiK·(r−r′)e−iK·(u(r)−u(r′)) (B.2)

where we have only kept terms that are not averaged to
zero due to the translational invariance. The first term
in (B.2) gives back the term proportional to q in (8). In-
deed one obtains

H1 =
1

2Ω

∑
q

e2ρ2
0q

ε
u∗L(q)uL(q). (B.3)

This gives the value d = ρ2
c/ε.

The second term can be expanded to second order in u
to give the elastic coefficients. The first order term van-
ishes because the perfect lattice (u = 0) is an extremum
of the energy. Up to second order in u,

H2 =
ρ2
0

2

∑
K�=0

∫

r,r′
V (r − r′)eiK·(r−r′)KαKβ

× (uα(r) − uα(r′))(uβ(r) − uβ(r′)) (B.4)

where the summation on the coordinate indices α,
β = (x, y) is implicit. Using

uα(r) − uα(r′) =
1
Ω

∑
q

uα(q)
(
eiq·r − eiq·r′

)
. (B.5)

One can rewrite (B.4) as

H2 =
ρ2
0

2Ω2

∑
K�=0

∑
q,q′

∫

r,r′
V (r − r′)eiK·(r−r′)KαKβ

uα(q)uβ(q′)
(
eiq·r − eiq·r′

)(
eiq′·r − eiq′·r′

)
. (B.6)

Using center of mass R = r + r′ and relative r0 = r − r′
coordinates can be rewritten as

H2 =
ρ2
0

2Ω

∑
K�=0

∑
q

∫

r0

V (r0)eiK·r0KαKβuα(q)uβ(−q)

× (2 − 2 cos(q · r0)) (B.7)

which using the Fourier transform of the potential V (r0)
denoted Ṽ (q) = 1/q one obtains

H2 =
ρ2
0

2Ω

∑
q


∑

K�=0

KαKβ(2Ṽ (K)

−Ṽ (K + q) − Ṽ (K− q)


 uα(q)uβ(−q) (B.8)

which gives the classical elastic constants.
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